

J. Eric Grove NRL

- Concerns
 - How accurate does CAL energy seed to Kalman need to be?
 - At low E, small fraction of E reaches CAL.
 - For Einc = 100 MeV, <Eobs> ~ 50 MeV
 - For Einc = 50 MeV, <Eobs> ~ 20 MeV
 - At high E, most E blows out the back.
 - For Einc = 10 GeV, <Eobs> ~ 6 GeV
 - For Einc = 100 GeV, <Eobs> ~ 40 GeV
 - Is a simple CAL sum good enough?
 - Or do we need to implement simple corrections prior to TkrRecon?
 - We could add TKR energy by scaling number of TKR hits.
 - We *could* scale Eobs by an average correction factor:
 - » use xtal ID to give crude angle estimate and scale Eobs by an average profile correction factor (which is a fcn of Eobs and theta).

- Concerns
 - Does TKR direction recon depend on species?
 - Does it matter if we pretend a heavy ion is an EM shower?
 - CAL needs TKR track to correct individual xtal energies
 - For best energy resolution
 - To correct for diode failures (need to account for light taper).

- Outline of process
 - 1. CAL: Convert to charge units
 - Use electronic calib. Convert from ADC bins to charge at FEE.
 - 2. CAL: Calculate energy in each xtal
 - Convert to MeV at center of xtal. Assume position = center of xtal.
 - 3. CAL: Calculate total energy deposited
 - Simple xtal sum
 - 4. CAL+TKR: Make simple energy corrections (necessary?)
 - Scale by avg-profile correction, $f(Eobs,\theta)$?
 - Add simple TKR energy correction, i.e. scale by num hits?
 - 5. CAL: Simple energy centroid (necessary?)
 - Calculate centroid in XZ and YZ planes using logI D positions.

- Outline of process (cont.)
 - 5. TKR: Direction recon
 - I'm clueless here, insert the real TKR stuff.
 - 6. TKR: Energy recon
 - Do the best TKR energy-loss correction, following daughters or whatever.
 - 7. CAL: Recalculate energy in each xtal
 - Use TKR direction. Accounts for failures and light tapering maps.
 - 8. CAL: Recalculate total energy deposited
 - Total all xtal energies, having accounted for failures and taper.
 - 9. CAL: Recalculate simple energy centroid
 - Repeat simple centroid, having accounted for failures and taper.

Outline of process (cont.)

10. ACD+CAL+TKR: Particle ID (necessary here, or later?)

Some complicated algorithms to confirm photon or particle.

11. TKR(+CAL): Direction recon

 Do the real TKR direction recon. Use CAL info to improve direction for late conversions, if possible.

12. CAL+TKR: Energy recon

- Use best CAL and TKR information to estimate incident energy.
- Use profiling, leakage correlation, TKR info, whatever.

13. I terate steps 10-12?

CAL-specific needs in PDA